PULMONARY PHYSIOLOGY

Alexander Villareal, MD

Wisconsin Sleep Society - May 6th, 2016

DISCLOSURES

- I am an employee of The Sleep Wellness Institute Inc.
- I am NOT receiving direct or indirect payment from any other commercial entity for honorarium, travel or other expenses

EDUCATIONAL OBJECTIVES

To describe the anatomy of the respiratory system

To identify the physiology of the respiratory system

• To correlate clinical findings with anatomy of the respiratory system

EMBRYOLOGY OF THE RESPIRATORY SYSTEM

- Association between the foregut and the early respiratory system at 4-5 weeks of development
- Excerpts of the histology sections and their approximate level are shown in the cartoon of the embryonic respiratory/gastrointestinal tracts
- initial bifurcation of foregut (oesophagus) and respiratory (trachea).
- heart (ventral) and the dorsal aortas (dorsal) to the lung buds.
- stomach below the lung buds.
- narrow pleural canals outside the lung buds.

EMBRYOLOGY OF THE RESPIRATORY SYSTEM

- Week 4 laryngotracheal groove forms on floor foregut.
- Week 5 left and right lung buds push into the pericardioperitoneal canals (primordia of pleural cavity)
- Week 6 descent of heart and lungs into thorax. Pleuroperitoneal foramen closes.
- Week 7 enlargement of liver stops descent of heart and lungs.
- Month 3-6 lungs appear glandular, end month 6 alveolar cells type 2 appear and begin to secrete surfactant.
- Month 7 respiratory bronchioles proliferate and end in alveolar ducts and sacs.

SKIN

SKIN PROBLEMS

SOLUTIONS

NOSE

Anatomy of the Nose

NASAL PROBLEMS

Health Matters

Nasal polyps

Nasal polyps are sac-like growths of inflamed tissue lining the sinuses. They can block drainage of mucus resulting in infecton or sinusitus.

> Ostia Small openings connect sinuses to nose Polyps Commonly grow near ostia

Sinuses

Four paired chambers in skull

- 1 Frontal
- 2 Maxillary 3 Ethmoid
- 4 Sphenoid

Symptoms

- · Mouth breathing
- Nasal obstruction
- Constant runny nose
- · Sense of smell loss

Polyp risk factors

- Asthma
- · Chronic sinus infections
- Cystic fibrosis
- · Hay fever
- · Allergy to aspirin

large polyps, restores normal drainage; polyps can regrow

· Surgery removes

Treatment · Drugs can shrink

small polyps

Source: National Institutes of Health (U.S.), Intelihealth, theasthmacenter.com Graphic: Lee Hulteng, Judy Treible

© 2009 MCT

TRACHEA, BRONCHIOLES AND

BRONCHI

Trachea

Bronchii

Bronchioles

LUNGS

LUNG A Right lung Apical segment Superior lobe Posterior segment

HISTOLOGY - ALVEOLI

- Epithelium
 - 1. type I pneumocytes: large flattened cells 95% area
 - 2. type II pneumocytes 5% area & 60% number of cells. Secrete 'surfactant'
- Surfactant overcomes surface tension preventing alveoli from collapse
- Macrophages are important for ingesting bacteria and particles, and arise from monocytes, which have escaped from the blood capillaries

VENTILATION

DIFFUSION

BLOOD FLOW

GAS EXCHANGE

VENTILATION PERFUSION RATION

ALVEOLAR CAPILLARY GAS EXCHANGE

RESPIRATORY CONTROL

CENTRAL REGULATION OF BREATHING

1 CO₂ levels in the blood rise as a result of exercise.

Signals a need for more

2 Breathing control centers in the brain monitor the rising CO₂ levels in the blood.

Breathing control

centers

Brain

Diaphragm

Nerve signals trigger contraction of muscles to increase breathing rate and depth.

oxygen

PRIMARY MODULATORS OF BREATHING

- Primary central chemoreceptors (C) are located near the ventral surface of the medulla.
- The ventral medullary surface & retrotrapezoid nucleus are extremely sensitive to changes in H+
- CO2 crosses the blood-brain barrier.
- CO2 + H2O ↔ H2CO3 ↔ H+ + HCO3
- ↑H+ activates brain chemoreceptors → ↑
 ventilation
- Primary peripheral chemoreceptors (carotid and aortic bodies) → sensitive to PO2 & PCO2 (less).

SECONDARY MODULATORS OF BREATHING

- The cerebral cortex is responsible for voluntary control of breathing
 - Sends signals through the corticospinal and corticobulbar tracts.
- Receptors in the lung react to lung volume and irritants
 - Send feedback through the vagus nerve.
- Proprioceptors in muscles and tendons stimulate breathing, as evidenced by passive movements that increase respiratory rate

CENTRAL SLEEP APNEA

LUNG VOLUMES AND

EFFECTS OF OBESITY ON BREATHING

Central nervous system

Decreased central respiratory drive

- Difficult positioning

POSITIVE AIRWAY PRESSURE

CPAP

CPAP VS. BPAP

ADAPTIVE SERVO VENTILATION

VAPS

Volume Assured Pressure Support

VAPS

IVAPS - ResMed

AVAPS - Philips

SUMMARY

- Nasal problems affect interface selection
- CPAP \rightarrow OSA
- BPAP → OSA / hypoventilation
- BPAP ST / VAPS → hypoventilation (abnormal breathing drive)
- Greater weight ≠ bigger lungs in obese
- ASV → Central sleep apnea / Cheyne Stokes Respiration
- Understanding anatomy and physiology will make you a better technologist!

THANK YOU

