Management of Complicated Sleep Apnea

Teofilo Lee-Chiong MD Chief Medical Liaison Philips Respironics

Professor of Medicine National Jewish Health University of Colorado

Disclosure

- Research funding: Philips Respironics
- Consulting: Elsevier, CareCore National
- Chief Medical Liaison: Philips Respironics

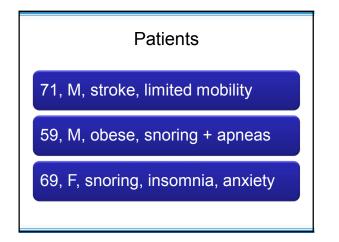
Learning Objectives

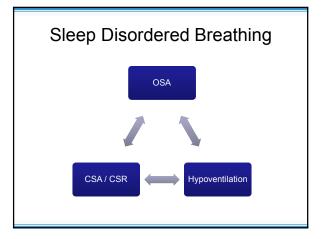
- Define complicated sleep disordered breathing
- Identify etiologic mechanisms
- Describe the natural history of complex sleep apnea
- Recognize the uses and limitations of ASV and AVAPS

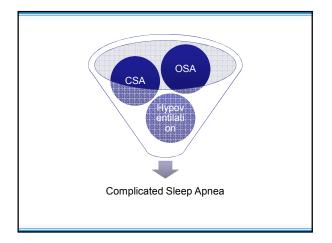
Polysomnography

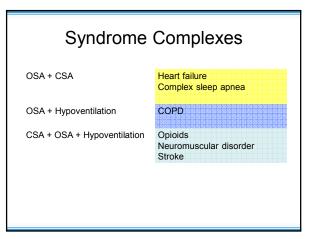
Mode	Total AHI	OA	OH	CA
Baseline	141	26	188	77
CPAP 5	137	14	53	33
CPAP 7	124	10	25	11
CPAP 9	46	1	15	1
CPAP 11	63	4	17	23
CPAP 11 + 2L	97	3	5	26
BPAP 15/11	68	5	4	31

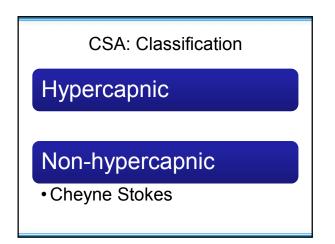
Management of CompSA

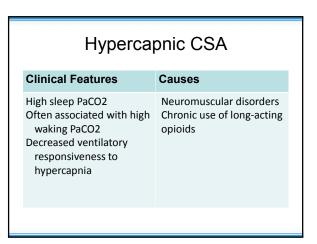

- Continue CPAP
 - Lower setting
 - Trial of higher setting
 - Add O2
- Stop CPAP, repeat PSG within a few days
- Switch to BPAP \pm O2 \pm back-up rate
- Switch to ASV

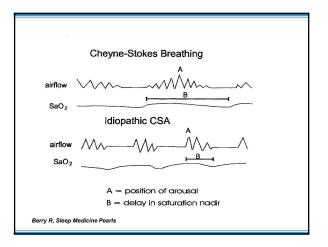

Patients

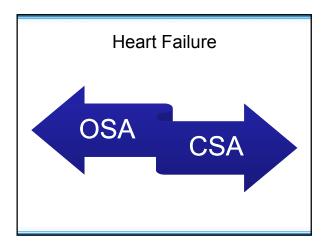

44, F, healthy, snoring, in Denver

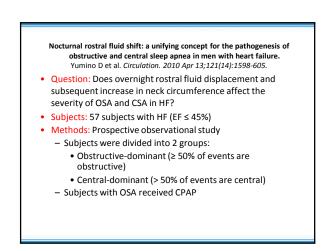

68, M, heart failure, dyspnea

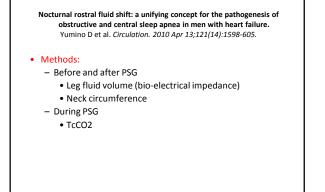

25, M, chronic pain, on narcotics



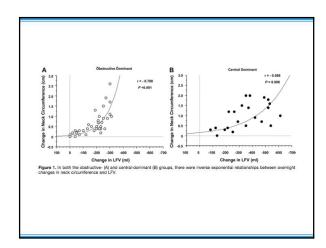


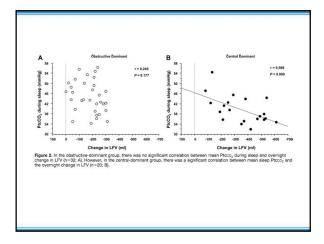


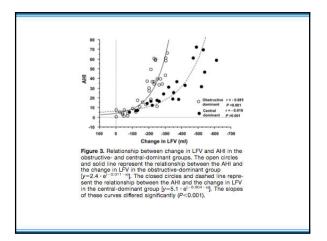

Non-hypercapnic CSA				
Clinical Features	Causes			
Normal or low waking PaCO2 Increased ventilatory response to hypercapnia Brief arousals during sleep trigger a ventilatory "overshoot" that lowers PaCO2 below its apneic threshold	Idiopathic CSA Sleep-onset CSA CSA due to HF High altitude periodic breathing Complex sleep apnea			


CSA vs. Cheyne Stokes					
CSA CSR					
Cycle time	Shorter (< 45 seconds)	Longer (> 45 seconds)			
Period of hyperpnea	Shorter	Longer			

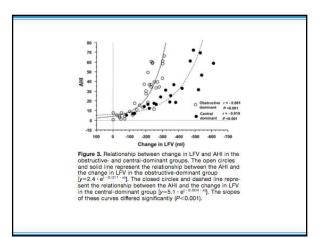
CSA vs. Cheyne Stokes				
	CSA	CSR		
Nadir of O2 desaturation	Following termination of apnea	More delayed		
Timing of arousals	Termination of apnea	Peak of hyperpnea		

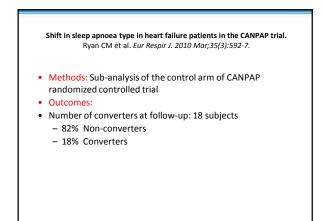



Nocturnal rostral fluid shift: a unifying concept for the pathogenesis of obstructive and central sleep apnea in men with heart failure. Yumino D et al. *Circulation. 2010 Apr 13;121(14):1598-605*.


- Outcomes:
- Among subjects in the obstructive-dominant group, overnight change in leg fluid volume was inversely related to:
 - Overnight change in neck circumference
 - AHI
 - But not TcCO2


Nocturnal rostral fluid shift: a unifying concept for the pathogenesis of obstructive and central sleep apnea in men with heart failure. Yumino D et al. *Circulation. 2010 Apr 13;121(14):1598-605.*


- Outcomes:
- Among subjects in the central-dominant group, overnight change in leg fluid volume was inversely related to:
- Overnight change in neck circumference
- AHI
- But directly related to TcCO2



Shift in sleep apnoea type in heart failure patients in the CANPAP trial. Shift in sleep apnoea type in heart failure patients in the CANPAP trial. Ryan CM et al. Eur Respir J. 2010 Mar;35(3):592-7. Ryan CM et al. Eur Respir J. 2010 Mar;35(3):592-7. Definitions: • Question: Does improvement in heart function during CPAP – Non-converter: > 50% of therapy of CSA in persons with HF lead to conversion of events remained central respiratory events into obstructive apneas? at follow-up – Converter: ≥ 50% of • Subjects: 98 subjects with HF and CSA H - LVEF: < 40% events were obstructive at follow-up – AHI: ≥ 15 (> 50% central apneas) onconvers aroup FIGURE 1. Total, central (III) and

	Changes in cardiovasc baseline to follow-up	ular variables fron	٦
Variable	Nonconversion group	Conversion group	p-value
Subjects n	80	18	
ANYHA class	0.0 (-0.1-0.2)	-0.1 (-0.5-2.3)	0.38
ALVEF %	-0.7 (-1.9-0.6)	2.8 (-0.4-6.0)	0.01
∆CHFQ dyspno score	0.1 (0.5-1.2)	0.9 (0.2-1.6)	0.01
change in New ejection fraction	ted as mean (95% Cl), unlet York Heart Association; ΔL ΔCHFQ: change in Chronic H ts important change of moder comparisons (ANCOVA).	VEF: change in left v leart Failure Questionn	entricular aire score

Complex Sleep Apnea

- Development or persistence of CSA or CSR with acute CPAP therapy in patients with predominantly OA or MA during the initial diagnostic study
- CPAP successfully eliminates OAH events but AHI remain elevated and sleep disruption persists due to CSA or CSR

Alternative Names

- CPAP-emergent CSA
- CPAP-persistent CSA
- Complicated sleep disordered breathing
- Many consider CompSA as a clinical subtype of CSA

Clinical Features			
Compared to OSA	Compared to CSA		
Slightly lower BMI	Higher BMI More frequent snoring Less HF Higher LVEF		

Prevalence of Complex Sleep Apnea					
Author/ Site (year)					
Morgenthaler Rochestor, USA (06)	223	15%	Split	32	-
Derniaka Oklahoma, USA (06)	116	20%	Split	51	2%
Lehman Adelaide, Australia (07)	99	13%	Mixed	72	-
Javaheri Cincinnati, USA (09)	1286	6.5%	Full Night	57	2%
Endo Japan (07)	1232	5.3%	Full Night	59	-
Yaegashi Japan (09)	297	5.7%	Full Night	56	-

The prevalence and natural history of complex sleep apnea. Javaheri S et al. J Clin Sleep Med 2009;5(3):205-211.

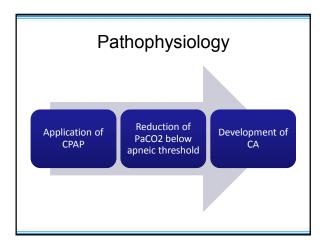
•Question: What is the prevalence and natural history of CPAPemergent CSA?

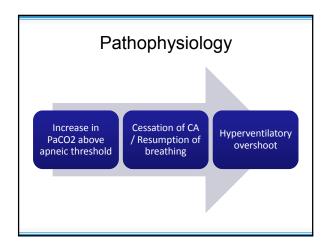
•Subjects: 1286 persons with newly diagnosed OSA

Methods: Retrospective review

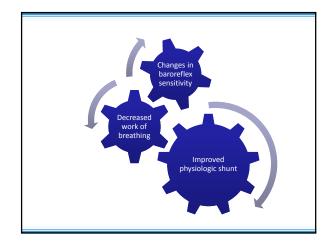
•Subjects underwent a full-night attended PSG and a full-night attended CPAP titration

•A second full-night attended CPAP titration was performed 5-6 weeks later for those who developed CPAP-emergent CSA


The prevalence and natural history of complex sleep apnea. Javaheri S et al. J Clin Sleep Med 2009;5(3):205-211.


•Outcomes:

Overall incidence of CPAP-emergent CSA (CAI ≥ 5) was 6.5%
Of the 84 subjects, 42 had a second PSG, and CSA was eliminated in 33 subjects


- Overall prevalence of CSA with long-term CPAP use was 1.5%

•Factors that were associated with persistent CPAP-emergent CSA were severe OSA, baseline CAI \geq 5 and use of opioids

Pathophysiology

- Probability of CA developing is greater if
- Narrow difference between baseline PaCO2 and apneic threshold (CO2 reserve)
- Increased respiratory sensitivity to PaCO2 (controller gain)

Differential Diagnosis

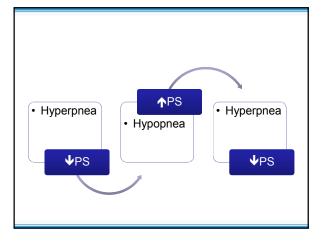
- Concurrent CSA and OSA with elimination of obstructive events during CPAP titration
- Variable SRBD
 - Supine-position OA and non-supine CA
 - NREM periodic breathing and REM OA
- Acute development of anxiety with posthyperventilatory hypocapnic CA

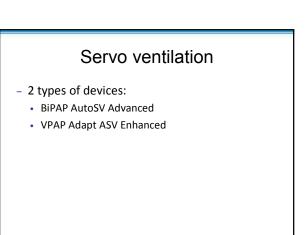
Management of CompSA

- Determine underlying pathophysiology
- Maximize medical therapy for comorbid disorders

Management of CompSA

- Continue CPAP
 - Lower setting
 - Trial of higher setting
 - Add O2
- Stop CPAP, repeat PSG within a few days
- Switch to BPAP \pm O2 \pm back-up rate
- Switch to ASV


Servo ventilation


- Assures constant ventilation based on measurements of airflow, either:

 Peak flow
 - Minute ventilation
- Provides varying amounts of respiratory support (above expiratory pressure) during different phases of periodic breathing

Servo ventilation

- Automatically adjusts settings in response to specific respiratory events
 - Increases EPAP for obstructive events
 - Increases inspiratory PS for hypopneas
 - Decreases inspiratory PS for hyperpneas/hyperventilation
 - Back up rate for impending apneas

BiPAP AutoSV Advanced

- Target: 4-minute moving average of breathby-breath peak flow
- Settings:
 - Automatic EPAP: 4-25 cmH₂O
 - EPAP increases by 1 cmH₂O q 15 seconds for obstructive apneas/hypopneas or snoring; proactive search q 5 min
 - Automatic PS: 0 to (30 minus EPAP)
 - Automatic back-up rate: 4-30

BiPAP AutoSV Advanced

• Initial settings

– EPAPmin	4	cmH2O
– EPAPmax	15	
– Psmin	0	
– Psmax	20	
 Max pressure 	25	
– Rate	Auto	

– Biflex

BiPAP AutoSV Advanced

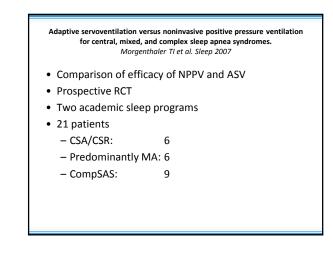
- If patient is unable to fall asleep
 - Adjust Biflex
 - If UA obstruction present increase EPAPmin by 1-2 cmH2O
 - If UA obstruction absent increase PSmin by 1-2 cmH2O

BiPAP AutoSV Advanced

+/-

- During the night
 - If obstructive events persist increase EPAPmin
 If central events persist increase PSmax or set
 - rate to minimum of 8-10 bpm

VPAP Adapt ASV Enhanced


- Target: 90% of 3-minute moving average of MV
- Settings:
 - EPAP: 4-15 cmH₂O
 - PS[min]: 3-6 cmH₂O; PS[max]: 8-16 cmH₂O
 - By manually setting EPAP, the device automatically adjusts PS[min] (3 cmH20) first then PS[max] (8 cmH20)

VPAP Adapt ASV Enhanced

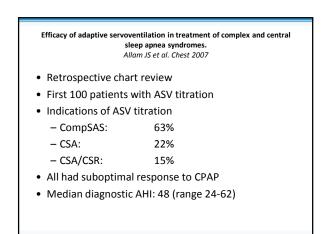
Settings:

- $PS[max] PS[min] \ge 5 cmH_2O$
- $EPAP + PS[max] \le 25 \text{ cmH}_2O$
- Default back-up rate: 15/min

Servo ventilation				
	BiPAP	VPAP		
Target	Peak flow	Minute ventilation		
EPAP	Automatic	Manual		
EPAP	4-25 cmH20	4-15 cmH20		
PS [min]	0 cmH20	3 cmH20		
Rate [default]	15	15		

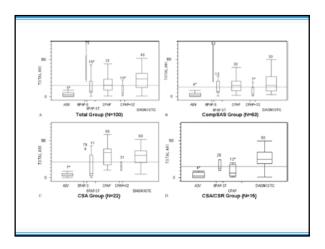
Adaptive servoventilation versus noninvasive positive pressure ventilation for central, mixed, and complex sleep apnea syndromes. Morgenthaler TI et al. Sleep 2007

Inclusion criteria


- Age ≥ 18 years
- Attended CPAP titration study within 12 months

Adaptive servoventilation versus noninvasive positive pressure ventilation for central, mixed, and complex sleep apnea syndromes. Morgenthaler TI et al. Sleep 2007

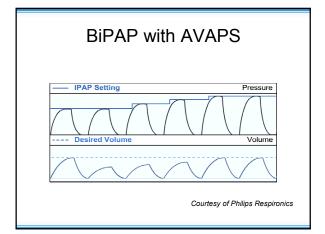
Changes in AHI


- Initial diagnostic AHI: 51.9 \pm 22.8/hr
- Reduction in mean AHI
 - CPAP: 34.3 ± 25.7
 - NPPV: 6.2 ± 7.6
 - ASV: 0.8 \pm 2.4 (P < 0.01)

Adaptive servoventilation versus noninvasive positive pressure ventilation or central, mixed, and complex sleep apnea syndromes. Morgenthaler TI et al. Sleep 2007						
	NPPV ASV					
CSA/CSR	1.5 ± 1.5	0 ± 0				
MA	10.2 ± 10.6	0.5 ± 0.8				
CompSAS	6.8 ± 6.8	1.6 ± 3.6				

	Efficacy of adaptive servoventilation in treatment of complex and central sleep apnea syndromes. Allam JS et al. Chest 2007					
Diagnostic polysom	Diagnostic polysomnography					
 Median AHI: 	• Median AHI: 48					
 Median OAI: 	13					
 Median CAI: 	4					

Efficacy of	Efficacy of adaptive servoventilation in treatment of complex and central sleep apnea syndromes. Allam JS et al. Chest 2007							
Change i	Change in respiratory events							
	CPAP	BPAP-S	BPAP-S/T	ASV				
AHI:	31	75	15	5				
OAI:	1	5	0	0				
CAI:	CAI: 16 40 1 0							


- Reevaluate for underlying comorbidities
 - Maximize therapy
 - Reduce opioids
- Switch to "other" ASV device
- Increase PEEP in ASV

If ASV Fails

- Add oxygen
- Trial of hypnotic agents
- Trial of acetazolamide
- CO2 monitors
- Trial of NIPPV (BiPAP with AVAPS)

BiPAP with AVAPS

- Bi-level with Average Volume Assured Pressure Support (AVAPS)
 - Maintains a stable tidal volume when the patient is placed on either the S, ST or T mode
 - By automatically adjusting PS between IPAPmin and IPAPmax settings
 - Avoids breath by breath changes in IPAP levels (1 mbar/min)

BiPAP with AVAPS

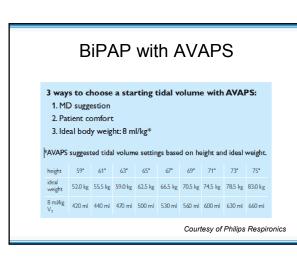
- Indications
 - OHS
 - COPD
 - Neuromuscular weakness
 - CCHS (one case report)
 - Others requiring nocturnal ventilation?

BiPAP with AVAPS

• NOT recommended for patients with periodic breathing

BiPAP with AVAPS

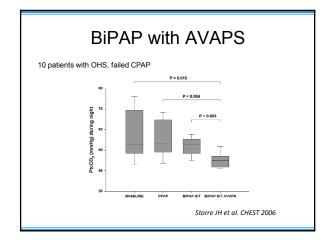
- Initial settings
 - EPAP 4 cmH2O
 - IPAPmin 8
 - IPAPmax
 - Rate
 - te
 - I-time
 - Rise time
 - Tidal volume* 8 mL/kg ideal body weight


25

8-10 bpm

1.5 sec

2-3


*adjust to patient comfort to allow sleep onset

BiPAP with AVAPS

- During the night
 - If obstructive events persist increase EPAP and IPAPmin (maintain PS)
 - If hypoventilation persists increase PS or rate
 - If O2 desaturation is present -
 - Increase EPAP
 - Increase PS or rate
 - Add O2

BiPAP with AVAPS					
Table 1 Clinical Study	studies o Year	n target volume during pressure Design	e-preset ver Cohort	tilation Target volume setting	Main target volume outcomes*
Stores of al ²	2006	8-week cross-over BCT (n=10)	0HS‡	7 m)/kg IBW (re=5), 10 m)/kg IBW (re=5)	 Greater reduction in nocturnel PtcCD₂ Comparable effect on polycommography Comparable offect on quality of life
Janssens et a/ ¹⁰ †	2009	1 day cross over RCT (n=12)	OHS¶	7.5±0.8 ml/kg body weight	 Greater reduction in nocturnal PteCO, Warse polysomnography
Ambrogio et al ¹¹	2009	1 day cross over RCT (n=28)	Mixed¶	8 m/kg IBW or 110% of baseline VT	 Comparable effect on polysomnog- replay Creater necturnal minute volume
Crisefulli er el ¹² †	2009	5-day cross-over RCT (n=9)	COPD±	8 mi/kg IBW	 Comparable improvements in morning PaCD₂ Subjective improvement in sleep effi- ciency
Oscenii et et ¹³ §	2010	8-week cross-over RCI (n=24)	COPO¶	11.0+3.9 (/min (minute volume)	 Companible effects on: Daytime blood gases Lang function and exercise capacite Quality of life Nocturnel PteCD₂
Murphy et al ¹⁴ †	2012	3-month RCT (n-46)	0HS‡	Individual adjustments simed at achieving control of nocturnal hypoventilation while abolishing obstructive events	 Comparable effects on: Daytima PaCD, Improvements Quality of life Weight loss Comparable increasements in FSS

Father and Son: The ASV Song

It's not time to make a change Just relax, take it easy It's still early, it's not your fault There's so much you have to know Find a chair, settle down If you want, you can sip your coffee Look it's ASV, it's new and it's working

- I was once like you are now, and I know that it's not easy
- To be calm when you've found apneas' going on
- But take you time, think a lot
- Why, think of everything the patient's got
- For he'll be here tomorrow, but his apneas might not

How can I try to relax, when I do, apneas reappear again

- It's always been the same, same old story
- From the moment the study started, they were supposed to go away
- Now, there's a way, and I know that I have to let them stay
- I know, I have to let apneas stay

All the times that I have tried, taking all the things I've learned aside

- It's hard, but it's harder to ignore them
- If ASV's right, I'd agree, but it's them they work, not me
- Now, there's a way and I know that I have to let them stay
- I know, I have to let apneas stay.